Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 185: 108568, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38493737

RESUMO

Per- and polyfluorinated alkyl substances (PFAS), known for their widespread environmental presence and slow degradation, pose significant concerns. Of the approximately 10,000 known PFAS, only a few have undergone comprehensive testing, resulting in limited experimental data. In this study, we employed a combination of physics-based methods and data-driven models to address gaps in PFAS bioaccumulation potential. Using the COnductor-like Screening MOdel for Realistic Solvents (COSMO-RS) method, we predicted n-octanol/water partition coefficients (logKOW), crucial for PFAS bioaccumulation. Our developed Quantitative Structure-Property Relationship (QSPR) model exhibited high accuracy (R2 = 0.95, RMSEC = 0.75) and strong predictive ability (Q2LOO = 0.93, RMSECV = 0.83). Leveraging the extensive NORMAN, we predicted logKOW for over 4,000 compounds, identifying 244 outliers out of 4519. Further categorizing the database into eight Organisation for Economic Co-operation and Development (OECD) categories, we confirmed fluorine atoms role in enhanced bioaccumulation. Utilizing predicted logKOW, water solubility logSW, and vapor pressure logVP values, we calculated additional physicochemical properties that are responsible for the transport and dispersion of PFAS in the environment. Parameters such as Henry's Law (kH), air-water partition coefficient (KAW), octanol-air coefficient (KOA), and soil adsorption coefficient (KOC) exhibited favorable correlations with literature data (R2 > 0.66). Our study successfully filled data gaps, contributing to the understanding of ubiquitous PFAS in the environment and estimating missing physicochemical data for these compounds.


Assuntos
Fluorocarbonos , Relação Quantitativa Estrutura-Atividade , 1-Octanol/química , Água/química , Solo
2.
Chemosphere ; 340: 139965, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37633602

RESUMO

This work aimed to verify whether it is possible to extend the applicability domain (AD) of existing QSPR (Quantitative Structure-Property Relationship) models by employing a strategy involving additional quantum-chemical calculations. We selected two published QSPR models: for water solubility, logSW, and vapor pressure, logVP of PFAS as case studies. We aimed to enlarge set of compounds used to build the model by applying factorial planning to plan the augmentation of the set of these compounds based on their structural features (descriptors). Next, we used the COSMO-RS model to calculate the logSW and logVP for selected chemicals. This allowed filling gaps in the experimental data for further training QSPR models. We improved the published models by significantly extending number of compounds for which theoretical predictions are reliable (i.e., extending the AD). Additionally, we performed external validation that had not been carried out in original models. To test effectiveness of the AD extension, we screened 4519 PFAS from NORMAN Database. The number of compounds outside the domain was reduced comparing the original model for both properties. Our work shows that combining physics-based methods with data-driven models can significantly improve the performance of predictions of phys-chem properties relevant for the chemical risk assessment.


Assuntos
Asteraceae , Fluorocarbonos , Pressão de Vapor , Solubilidade , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...